From these figures, and the corresponding curves of Figs. 212 and 213, it appears that for any given value of β , the maximum efficiency is attained when α is almost exactly equal to $\beta \div 2$. The maximum attainable hydraulic efficiency falls off as β and α are increased, but for values of β between 30° and 60° the effect is not large. The values of the peripheral velocity for entry without shock for any value of β working in conjunction with the best value for α , are as follows:— | β. | • 2.33 g.e.
• • • • • • • • • • • • • • • • • • • | 30° | 45° | 60° | 75° | 90° | |-----------|--|------------|-----|-----|-------------|-----| | u_2/v_1 | • | ·52 | •55 | •58 | · 63 | ·71 | So that since windage losses increase with the speed of rotation, the overall efficiency with a given size of jet and wheel will tend to fall off somewhat more rapidly than the hydraulic efficiency, with an increase in β . Moreover, since the effective sectional area of the wheel passages at inlet